## More on the European Union Contest for Young Scientists
In The contest consists in the competition of papers which have been prepared by the participants. Most appreciated are those which contain a complete solution of an interesting research problem. Obviously, not all papers may be considered of real significance, but the winning ones correspond (at least) to the level of a good Master's thesis in Poland. Here is a serious challenge for prospective Polish participants. After two years it seems that the challenge had been treated with due interest. Polish participants proved they can do very well among numerous prize-hungry contest finalists. Thanks to the possibilities offered to Poland after its association with the European Community, our representatives appeared in the finals twice (Newcastle, September 1995, and Helsinki, September 1996), each time carrying off prizes. Before presenting the details, one more quotation from our 1995 article: The contest is highly esteemed in the European Community: the prizes of the European Contest are appreciated more than laurels won at International Olympiads. The prestige of the contest stems from the high level of the winning papers on the one hand, and on the other - from the acknowledged competence and authority of the Jury members. Last but not least, the prizes are important: 5000 ECU for each of the three first prizes, 3000 ECU for each of the three second prizes and 1500 ECU for each of the six third prizes. You may look for exchange rates in any newspaper and compute the values in national currency.
In Newcastle Poland was represented by three papers (in biology,
physics and mathematics) and the mathematicians from Warsaw, Marcin
Kowalczyk and Marcin Sawicki, were awarded a third prize. In In the Helsinki finals both Polish contributions were considered prize-worthy. This gave Poland an excellent standing among prize-winners, second only to Germany, ex-aequo with the United Kingdom. The success of the mathematicians Maciej Kurowski and Tomasz Osman and of the palaeontologist Radoslaw Skibinski was made known to the general public in Poland both in newspapers and on TV on Monday, September 30, 1996. Radoslaw Skibinski discovered remains of hitherto unknown species of oligocene fish in the region of Rudawka Rymanowska (in the Beskid Niski mountains in the south of Poland) and reconstructed their anatomic structure and mode of life.
Tomasz Osman and Maciej Kurowski presented an extended version
of the paper for which T. Osman was awarded a gold medal at the
Polish School Mathematical Contest (co-organised by
If a polynomial W1 of
W2(x1,…,xn)=D(x1,…,xn) W1(x1,…,xn).
The key step in the proof consists in the description of the position
the set Z of all zeros of W1 occupies within the space
The repeated success of young Polish mathematicians in the finals
of the European Union Contest seems to suggest the following humble
conjecture: the gold medal in the Polish School Mathematical Contest,
supported by self-confidence, a perfectly elaborated English version
of the paper and a tiny bit of luck, is sufficient to win at least
a third prize in the EU Contest. We'll see whether this conjecture
is corroborated during the finals of the 9th European Union Contest
for Young Scinetists in Milan, between the 9
M. Stukow generalised to the tetragon the so-called Euler's formula,
which claims that in any triangle the radius
It turns out that if an (otherwise arbitrary) tetragon has the
property that a circle can be circumscribed on it and a circle
can be inscribed in it, then the distance
(where
The Editors of
Polish participants can find detailed information on the conditions
of participation in the European Union Contest for Young Scientists
in the office of the Krajowy Fundusz na Rzecz Dzieci (Polish Children's
Fund), ul. Chocimska 14, 00-791 Warsaw, Poland. |